Sortix nightly manual
This manual documents Sortix nightly, a development build that has not been officially released. You can instead view this document in the latest official manual.
| BIO_S_BIO(3) | Library Functions Manual | BIO_S_BIO(3) | 
NAME
BIO_s_bio,
    BIO_make_bio_pair,
    BIO_destroy_bio_pair,
    BIO_shutdown_wr,
    BIO_set_write_buf_size,
    BIO_get_write_buf_size,
    BIO_new_bio_pair,
    BIO_get_write_guarantee,
    BIO_ctrl_get_write_guarantee,
    BIO_get_read_request,
    BIO_ctrl_get_read_request,
    BIO_ctrl_reset_read_request —
    BIO pair BIO
SYNOPSIS
#include
    <openssl/bio.h>
const BIO_METHOD *
  
  BIO_s_bio(void);
int
  
  BIO_make_bio_pair(BIO *b1,
    BIO *b2);
int
  
  BIO_destroy_bio_pair(BIO
  *b);
int
  
  BIO_shutdown_wr(BIO *b);
int
  
  BIO_set_write_buf_size(BIO *b,
    long size);
size_t
  
  BIO_get_write_buf_size(BIO *b,
    long size);
int
  
  BIO_new_bio_pair(BIO **bio1,
    size_t writebuf1, BIO **bio2,
    size_t writebuf2);
int
  
  BIO_get_write_guarantee(BIO
  *b);
size_t
  
  BIO_ctrl_get_write_guarantee(BIO
    *b);
int
  
  BIO_get_read_request(BIO
  *b);
size_t
  
  BIO_ctrl_get_read_request(BIO
    *b);
int
  
  BIO_ctrl_reset_read_request(BIO
    *b);
DESCRIPTION
BIO_s_bio()
    returns the method for a BIO pair. A BIO pair is a pair of source/sink BIOs
    where data written to either half of the pair is buffered and can be read
    from the other half. Both halves must usually be handled by the same
    application thread since no locking is done on the internal data
  structures.
Since BIO chains typically end in a source/sink BIO, it is possible to make this one half of a BIO pair and have all the data processed by the chain under application control.
One typical use of BIO pairs is to place TLS/SSL I/O under application control. This can be used when the application wishes to use a non-standard transport for TLS/SSL or the normal socket routines are inappropriate.
Calls to BIO_read(3) will read data from the buffer or request a retry if no data is available.
Calls to BIO_write(3) will place data in the buffer or request a retry if the buffer is full.
The standard calls BIO_ctrl_pending(3) and BIO_ctrl_wpending(3) can be used to determine the amount of pending data in the read or write buffer.
BIO_reset(3) clears any data in the write buffer.
BIO_make_bio_pair()
    joins two separate BIOs into a connected pair.
BIO_destroy_pair()
    destroys the association between two connected BIOs. Freeing up any half of
    the pair will automatically destroy the association.
BIO_shutdown_wr()
    is used to close down a BIO b. After this call no
    further writes on BIO b are allowed; they will return
    an error. Reads on the other half of the pair will return any pending data
    or EOF when all pending data has been read.
BIO_set_write_buf_size()
    sets the write buffer size of BIO b to
    size. If the size is not initialized, a default value
    is used. This is currently 17K, sufficient for a maximum size TLS record.
    When a chain containing a BIO pair is copied with
    BIO_dup_chain(3), the
    write buffer size is automatically copied from the original BIO object to
    the new one.
BIO_get_write_buf_size()
    returns the size of the write buffer.
BIO_new_bio_pair()
    combines the calls to
    BIO_new(3),
    BIO_make_bio_pair() and
    BIO_set_write_buf_size() to create a connected pair
    of BIOs bio1 and bio2 with write
    buffer sizes writebuf1 and
    writebuf2. If either size is zero, then the default
    size is used. BIO_new_bio_pair() does not check
    whether bio1 or bio2 point to
    some other BIO; the values are overwritten and
    BIO_free(3) is not
  called.
BIO_get_write_guarantee()
    and
    BIO_ctrl_get_write_guarantee()
    return the maximum length of data that can be currently written to the BIO.
    Writes larger than this value will return a value from
    BIO_write(3) less than the
    amount requested or if the buffer is full request a retry.
    BIO_ctrl_get_write_guarantee() is a function whereas
    BIO_get_write_guarantee() is a macro.
BIO_get_read_request()
    and
    BIO_ctrl_get_read_request()
    return the amount of data requested, or the buffer size if it is less, if
    the last read attempt at the other half of the BIO pair failed due to an
    empty buffer. This can be used to determine how much data should be written
    to the BIO so the next read will succeed: this is most useful in TLS/SSL
    applications where the amount of data read is usually meaningful rather than
    just a buffer size. After a successful read this call will return zero. It
    also will return zero once new data has been written satisfying the read
    request or part of it. Note that
    BIO_get_read_request() never returns an amount
    larger than that returned by
    BIO_get_write_guarantee().
BIO_ctrl_reset_read_request()
    can also be used to reset the value returned by
    BIO_get_read_request() to zero.
Both halves of a BIO pair should be freed. Even if one half is implicitly freed due to a BIO_free_all(3) or SSL_free(3) call, the other half still needs to be freed.
When used in bidirectional applications (such as TLS/SSL), care should be taken to flush any data in the write buffer. This can be done by calling BIO_pending(3) on the other half of the pair and, if any data is pending, reading it and sending it to the underlying transport. This must be done before any normal processing (such as calling select(2)) due to a request and BIO_should_read(3) being true.
To see why this is important, consider a case where a request is sent using BIO_write(3) and a response read with BIO_read(3), this can occur during a TLS/SSL handshake for example. BIO_write(3) will succeed and place data in the write buffer. BIO_read(3) will initially fail and BIO_should_read(3) will be true. If the application then waits for data to become available on the underlying transport before flushing the write buffer, it will never succeed because the request was never sent.
BIO_eof(3) is true if no data is in the peer BIO and the peer BIO has been shutdown.
BIO_ctrl(3) cmd arguments correspond to macros as follows:
| cmd constant | corresponding macro | 
| BIO_C_DESTROY_BIO_PAIR | BIO_destroy_bio_pair() | 
| BIO_C_GET_READ_REQUEST | BIO_get_read_request() | 
| BIO_C_GET_WRITE_BUF_SIZE | BIO_get_write_buf_size() | 
| BIO_C_GET_WRITE_GUARANTEE | BIO_get_write_guarantee() | 
| BIO_C_MAKE_BIO_PAIR | BIO_make_bio_pair() | 
| BIO_C_RESET_READ_REQUEST | BIO_ctrl_reset_read_request() | 
| BIO_C_SET_WRITE_BUF_SIZE | BIO_set_write_buf_size() | 
| BIO_C_SHUTDOWN_WR | BIO_shutdown_wr() | 
| BIO_CTRL_EOF | BIO_eof(3) | 
| BIO_CTRL_GET_CLOSE | BIO_get_close(3) | 
| BIO_CTRL_PENDING | BIO_pending(3) | 
| BIO_CTRL_RESET | BIO_reset(3) | 
| BIO_CTRL_SET_CLOSE | BIO_set_close(3) | 
| BIO_CTRL_WPENDING | BIO_wpending(3) | 
RETURN VALUES
BIO_new_bio_pair() returns 1 on success,
    with the new BIOs available in bio1 and
    bio2, or 0 on failure, with NULL pointers stored into
    the locations for bio1 and bio2.
    Check the error stack for more information.
When called on a BIO pair BIO object,
    BIO_method_type(3)
    returns the constant BIO_TYPE_BIO and
    BIO_method_name(3)
    returns a pointer to the static string "BIO pair".
EXAMPLES
The BIO pair can be used to have full control over the network access of an application. The application can call select(2) on the socket as required without having to go through the SSL interface.
BIO *internal_bio, *network_bio;
...
BIO_new_bio_pair(&internal_bio, 0, &network_bio, 0);
SSL_set_bio(ssl, internal_bio, internal_bio);
SSL_operations();  /* e.g. SSL_read() and SSL_write() */
...
application |   TLS-engine
   |        |
   +----------> SSL_operations()
            |     /\    ||
            |     ||    \/
            |   BIO-pair (internal_bio)
            |   BIO-pair (network_bio)
            |     ||     /\
            |     \/     ||
   +-----------< BIO_operations()
   |        |
 socket     |
...
SSL_free(ssl);		/* implicitly frees internal_bio */
BIO_free(network_bio);
...
As the BIO pair will only buffer the data and never directly access the connection, it behaves non-blocking and will return as soon as the write buffer is full or the read buffer is drained. Then the application has to flush the write buffer and/or fill the read buffer.
Use
    BIO_ctrl_pending(3)
    to find out whether data is buffered in the BIO and must be transferred to
    the network. Use BIO_ctrl_get_read_request() to find
    out how many bytes must be written into the buffer before the SSL operations
    can successfully be continued.
SEE ALSO
BIO_new(3), BIO_read(3), BIO_should_retry(3), ssl(3), SSL_set_bio(3)
HISTORY
BIO_s_bio(),
    BIO_make_bio_pair(),
    BIO_destroy_bio_pair(),
    BIO_set_write_buf_size(),
    BIO_get_write_buf_size(),
    BIO_new_bio_pair(),
    BIO_get_write_guarantee(),
    BIO_ctrl_get_write_guarantee(),
    BIO_get_read_request(), and
    BIO_ctrl_reset_read_request() first appeared in
    OpenSSL 0.9.4 and have been available since OpenBSD
    2.6.
BIO_ctrl_reset_read_request() first
    appeared in OpenSSL 0.9.5 and has been available since
    OpenBSD 2.7.
BIO_shutdown_wr() first appeared in
    OpenSSL 0.9.6 and has been available since OpenBSD
    2.9.
CAVEATS
As the data is buffered, SSL operations may return with an
    ERROR_SSL_WANT_READ condition, but there is still
    data in the write buffer. An application must not rely on the error value of
    the SSL operation but must assure that the write buffer is always flushed
    first. Otherwise a deadlock may occur as the peer might be waiting for the
    data before being able to continue.
| May 19, 2024 | Sortix 1.1.0-dev | 
