Sortix cross-nightly manual
This manual documents Sortix cross-nightly. You can instead view this document in the latest official manual.
NAME
BN_add, BN_uadd, BN_sub, BN_usub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_add_quick, BN_mod_sub, BN_mod_sub_quick, BN_mod_mul, BN_mod_sqr, BN_mod_lshift, BN_mod_lshift_quick, BN_mod_lshift1, BN_mod_lshift1_quick, BN_exp, BN_mod_exp, BN_gcd — arithmetic operations on BIGNUMsSYNOPSIS
#include <openssl/bn.h>BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx);
BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx);
BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx);
BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
DESCRIPTION
BN_add() adds a and b and places the result in r (r=a+b
). r may be the same BIGNUM as a or b.r=|a|+|b|
). r may be the same BIGNUM as a or b.r=a-b
). r may be the same BIGNUM as a or b.r=|a|-|b|
). It requires the absolute value of a to be greater than the absolute value of b; otherwise it will fail. r may be the same BIGNUM as a or b.r=a*b
). r may be the same BIGNUM as a or b. For multiplication by powers of 2, use BN_lshift(3).r=a^2
). r and a may be the same BIGNUM. This function is faster than BN_mul(r, a, a).dv=a/d
, rem=a%d
). If the flag BN_FLG_CONSTTIME is set on a or d, it operates in constant time. Either of dv and rem may be NULL, in which case the respective value is not returned. The result is rounded towards zero; thus if a is negative, the remainder will be zero or negative. For division by powers of 2, use BN_rshift(3).r=(a*b)%m
). r may be the same BIGNUM as a or b. For a more efficient algorithm for repeated computations using the same modulus, see BN_mod_mul_montgomery(3).r=a*2^n mod m
).r=a*2 mod m
).r=a^p
). This function is faster than repeated applications of BN_mul().r=(a^p)%m
). If the flag BN_FLG_CONSTTIME is set on p, it operates in constant time. This function uses less time and space than BN_exp().RETURN VALUES
For all functions, 1 is returned for success, 0 on error. The return value should always be checked, for example:if (!BN_add(r,a,b)) goto err;